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Abstract—Although active power losses in transmission net-
works are not significant in percentage, especially compared
to the distribution networks, they constitute a major expense

for the system operators. Predicting these losses and procuring
them in a most feasible way becomes of out-most importance.
The paper discusses the importance of short-term active power
losses forecasting of different scales and proposes a model based
on supervised machine learning to tackle the issue. Support
vector regression method with weather forecasts as input data is
validated on Croatian Transmission System Operators (HOPS)
data, showing significant improvements as compared to business-
as-usual approach. The developed model is integrated into a
software tool and deployed at HOPS.

Index Terms—active power losses, short-term forecast, super-
vised machine learning, transmission system operator

I. INTRODUCTION

Since the liberalization of electrical energy markets, most
of electrical energy is bought and sold on the markets. It is
a general empirical rule that the earlier one buys electrical
energy, the less the average price will be. For various technical
and financial reasons the majority of the electrical energy
traded through power exchanges is bought and sold one day
in advance on the day-ahead markets. Most of these markets
still operate on an hourly trading intervals. This implies that
the demand for electrical energy needs to be predicted on an
hourly resolution at least 12 hours before the actual delivery,
which clearly points to the value of accurate forecasts for both
production and consumption. The advantage of controllable
power plants is that they can easily adjust their production and
correct any forecast errors if needed. This reduces the signifi-
cance of forecasting their generation. It is more important, but
also more difficult, to forecast uncontrollable power sources,
especially wind and photovoltaic power plants, because of their
continued increase in the energy mix. On the consumption
side, forecasting the load receives the most focus, especially
the low voltage distribution. Higher voltage consumption is
usually easier to predict, while the complexities and challenges
raise as we move towards the end-users in the low voltage
networks. In this sense, weather forecasts, especially the

temperature, which is the easiest meteorological parameter to
predict, play a role in the forecasting of the load.

The Transmission Systems Operator (TSO) needs to ensure
secure and stable operation of the entire system; this means
that, in addition to the above mentioned data and predictions,
it needs to ensure procurement of non-frequency services and
power losses. Accurately predicting quantity and optimizing
the source of service provision can result in lower cost for
the TSO and higher overall social benefit. It needs to be
emphasized that both prediction and optimization is in reality
conducted on multiple time steps preceding the actual need
for the service and that trade-off of service cost and prediction
forecast is the key in minimizing the total TSO cost.

In this paper we address the problem of short-term active
power losses forecasting, while the market aspect of procuring
them is outside of the scope of the paper. However, we believe
that the methodology and the logic presented here can be easily
extended to other services and their market procurement.

To systematically address the problem of forecasting the
active power losses (in further text: losses) one has to solve a
problem of creating a power flow forecast of the entire trans-
mission system. Inputs to the power flow forecast are forecasts
of all generation, consumption and cross-border transits. It is
clear that the complexity of such a forecast is much greater
than any other forecast related to power systems. To the best
of authors knowledge there is limited research focusing on
transmission system losses, especially those capturing the full
complexity behind the problem. As one of rare papers in that
area we recognize the work in [1].

The complete solution, as described in [l], is to create
a forecast of power flows in all of the power lines. To
create a forecast of power flows, one has to start with a
separate generation forecast and load forecast. Not only the
total generation and load has to be forecasted, but generation
and load forecast has to be produced for every node of the
transmission system. To complete the input parameters for
power flow calculation of a transmission system, one has to
create a power transit forecast, for generation and load that
is not included in the nodes of the transmission system being
observed. The next step is to create a topology forecast. Once
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topology and all the generation and loads are calculated, power
flow calculation is done. From the historical measurements, the
relation of power flows and active power losses for each of
the powerlines is inferred. Finally, using that relation and the
forecasted power flow through the powerline, one calculates
the active power line loss. Similar procedures can be done to
find losses in the nodes from the historical data and power
flows calculation.

This complete procedure requires a tremendous amount of
input parameters, many of which have to be measured in real
time. The infrastructure for such data availability is costly, and
that cost is not justified by the savings from a more accurate
losses forecast alone. Since this is not the only advantage from
digitalization of transmission systems on the required scale, it
is likely that in the future the required data will be available
which will result in the possibility to implement the described
procedure in reality.

In the absence of full data availability, most of the research
focuses only on specific aspects of the active power loss
forecasting problem. An example of that is recognizing and
selecting only influencing variables from the available data
and creating forecasts only based on that; a good example
of that is using weather condition data. There are two main
reasons for this: the weather conditions impact the generation
and consumption in general (also their forecasts), but also
the same power line flow can create different power losses
under different weather conditions. By far, the most important
weather condition for losses is the presence of water on the
power lines and transformer nodes. Thus, high humidity and
rain [2] increase the losses. The effect is even greater if the
water is frozen. The frozen water can be in many forms: frost,
snow, solid ice [3], hoarfrost [4]. Even without the entire
model of the transmission system, the authors of [S] have
shown that by tracking what percentage of transmission system
is under the relevant humid and icing conditions, one can
increase the accuracy of the losses by a considerable amount.
Additional meteorological parameters are also important for
losses forecast, however, their impact is less pronounced:
wind, air temperature [6] and sun irradiance. Besides the
meteorological parameters, power flows intensity influence the
active power loss. We have already discussed the difficulties
in performing power flows forecasting, but [7] and [8] cleverly
sidestep the full power flow forecast by looking only at the
cross border trade. Because the increased cross border trade
increases power flows, the losses increase. They show that they
can use the cross border trade contracts to improve the losses
forecast.

The paper focuses on the currently available data for creat-
ing a tool to predict power losses in the Croatian transmission
network based on real data obtained from the Croatian Trans-
mission System Operator (HOPS). Future work will focus on
expanding the model and the accuracy of prediction by includ-
ing newly available data. In this sense, the work presented
here can be regarded as the initial step in organizing and
processing vast amount of data for the purpose of improving
HOPS forecasts and therefore the operation of the Croatian
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transmission system. We here present the results obtained so
far.

The paper is organized as follows: In Section II-A the
current standard operating procedure of forecasting losses in
TSO is described. Section II-B describes available input data
for machine learning algorithm and Section II-C describes the
selection of algorithm itself. Criteria for the developed model
evaluation are discussed in Section II-D. In Section III the
results of the research are presented after which in Section IV
the argument is concluded and future work is discussed.

II. METHODOLOGY

A. Standard procedures in HOPS and forecast requirements

As stated, many TSOs, including Croatian transmission
system operator - HOPS (from Croatian: ”Hrvatski Operator
Prijenosnog Sustava”) have a legal obligation to cover the
costs of losses. To cover the cost at the lowest price, the TSO
participates in multiple electrical energy markets. The most
important market for this paper is the Cropex (Croatian power
exchange) day-ahead market [9]. The rules are similar to many
European day-ahead energy markets (like Elspot of NordPool).
The price setting at Cropex day-ahead market is a two-sided,
uniform price auction, where the system price is given as the
intersection between the aggregate supply and demand curves.
Hourly bids have to be submitted by noon for every hour of
tomorrow, i.e. from 12 hour into the future to 36 hours into
the future. From the fact that the bids on the market are on
hourly timescale, it is concluded that the forecast has to have
hourly granularity i.e. the forecast has to predict how much of
the losses will occur at each hour. The horizon of the forecast
has to be 36 hours at minimum (from noon today to midnight
tomorrow). The granularity and time horizon for which the
forecast is generated can be different (e.g. for longer periods),
however, this depends on the procedures and requirements by
the user. The error in the forecast causes the mismatch in
bought and used electrical energy, so the TSO has to pay
the balancing cost or cover the difference in some other way.
On average, this balancing cost or other solutions are more
expensive than the day-ahead price, so it is of financial interest
to have the smallest error possible.

The current standard procedure in the HOPS system opera-
tion department for creating forecasts relies on the similarity
of losses in the similar weather conditions. The procedure
is done manually by a human expert with the assistance of
the software NetVision DAM [10]. The software can combine
some historical data with the current (or planned) network
topology. However, as the main purpose of the software is not
to forecast losses, there are some drawbacks. The software
does not take into the account changes in meteorological
parameters, unplanned power flows and is blind to some
parts of the grid. Additionally, it is not automated, so every
morning at 9 AM human experts have to manually configure
the software. Although this procedure yields only an 3 %
error aggregated for the whole month, if viewed as an hourly
forecast the average error is between 15 % and 25 %. Since
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the market bids are hour based, the latter, higher error will be
transferred to the market bids errors.

B. Data availability and data preparation

For the reasons mentioned in Section II-A we set out to cre-
ate a new software tool for automatic forecasting of losses. The
schematic of the software tool data flow is shown in Fig. 1. The
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Fig. 1. Schematic of the software tool data flow.

first step was considerable data analysis and data validation.
There are two main sources of input data. The first one is the
TSO’s historical data warehouse (DWH) accessible through
the IBM Cognos Analytic reporting system that contains the
measurements from the transmission system. Among other
data, the DWH contains historical data on the hourly losses.
These hourly losses are not measured directly, but calculated
by subtracting all outputs to the TS (consumption, export...)
from all inputs to the TS (generation, import...). It is calculated
as a single number for the entire transmission system. Given
the high quality of the data, no extensive data preparation was
needed.

The second source of data is the TSO’s local weather
database that contains the TSO’s weather measurements and
NWP (numerical weather prediction) forecasts, specifically the
meteorological forecasting model WRF [11]. WRF forecasts
are calculated every 6 hours, so the WRF database has new
meteorological forecasts every 6 hours starting from mid-
night UTC each day. The weather measurements are avail-
able in real-time. There is a huge number of meteorological

parameters which include measurements and forecasts. To
select which of these parameters influence the losses, linear
correlation analysis was done correlating losses and all of
the meteorological parameters. The ones that had significant
correlation were selected as predictors - inputs to the machine
learning model.

C. Algorithm selection and implementation

Since the exact modeling of the problem required much
more data than was available, the problem of losses forecast
was tackled with machine learning. Machine learning tools
are comparatively old, dating to the 1950s. The methods
have gained much more popularity in recent years due to
more computing power and more data availability. In creating
a machine learning model, the exact instructions are not
explicitly programmed into the software. Rather, the algorithm
is data-driven and we say that the algorithm learns from the
data, hence the term machine learning. There are multiple
different types of machine learning, but for forecasting, the
type of machine learning most commonly used is supervised
learning. In this type of machine learning, we split the data
into two parts. One part is used for training and another part is
used for testing. In the training phase, we supply the algorithm
both the input data and the expected result. In this manner,
the algorithm can “learn” the relation between input data and
actual result. Thus we create (or train) our forecasting model
and we can use it to make the predictions. In the operation
phase, we supply the model with the input data, but not the
expected result. The model now generates the result from the
relation between input data and expected results it learned
in the training phase. In our case input data was weather
forecasts for the forecasted hour and historical technical losses.
Le. value of losses in the same hour, but yesterday, or the
day before. The expected result, in our case, was the actual
value of technical losses for the observed hour. The name
supervised learning can be a bit misleading, it comes from the
training phase, where the training “supervisor” is the actual
data. When selecting the machine learning algorithm for some
specific application one has to pay attention to specifics of the
problem. In our case it was the large number of predictors
and the importance of interpretability. Interpretability is always
important to consider when dealing with transmission systems.
Large number of predictors could be avoided in future work as
more granular data becomes available. However, in the current
model, we forecast losses of the entire TSO in the same model,
therefore, all weather predictors have to be in the same model.
Because of these reasons we didn’t resort to artificial neural
networks or deep learning, but remained at classical machine
learning. Our problem is suited for supervised learning, and
since we try to predict a number it, we need to use the regres-
sion subtype. There are different options in this domain, but
we chose support vector regression [12] for its interpretability,
efficiency and speed of execution. Support vector regression is
a modification of a much more common algorithm that is used
for classification: Support vector machine. In our case, the
support vector regression (SVR) was implemented in Python
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programming language [13] using the machine learning library
Scikit-learn [14]. As discussed before the model has a large
number of predictors. For this reason we were limited to the
use of a linear kernel. However, this also means we could not
use the full potential of the method. Still, the obtained results
were sufficiently better than the baseline to stop our search
for a better algorithm. We decided to train 72 models, one
for the forecast 1 hour into the future, another for forecasting
of losses 2 hours into the future, and so on until we train
one model for forecasting 72 hours into the future. The next
step after selecting the algorithm was selection of predictors,
i.e. the input data we will feed to the algorithm. We used
two types of predictors: historical losses data and weather
forecasts as described in Section II-B. For the predictors from
historical data, we exploited the fact that losses values often
follow a daily cycle behavior. Because of this, we chose to
have predictors the values from the same hour, but yesterday,
i.e. 24 hours into the past. We sometimes denote this as t-24
(from time — 24 hours) or d-1 (from now — 1 day). Similarly,
we chose d-2, d-3 and w-1 (from now — 1 week) values of
losses for predictors that are values at the same hour but 2
and 3 days ago respectively. Another fact we exploited is the
fact that losses typically change slowly. We therefore used
the last measured value of losses as a predictor. We show the
importance of these 5 predictors as a function of forecasted
hour in the figure Fig. 2.

—— Losses d-1
0.8 4 —— Losses d-2
—— Losses d-3
—— Losses w-1
—— Last measurement

Importance of predictor [a.u.]

1'0 Zh 3:3 4:0 5|0 6IU
Forecasted hour [h]

Fig. 2. Importance of historical predictors.

Predictor ”last measurement” was more important in the
first hours of forecast than in the later ones, because of the
slowly changing nature of losses. Note that predictors d-
1 and d-2 are not available to us after one and two days
respectively. Introducing weather forecast parameters as inputs
improves the losses forecast, but increases the complexity of
the model. Thus a balance has to be found in improving
the results without overwhelming the model. This was done
by evaluating model performance with and without certain
parameter to test its importance. We used snow, wind speed,
air pressure, air temperature, rain, air humidity and dew point
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temperature. Additionally, most of the parameters forecasts
were at multiple locations scattered around Croatia. Thus we
accounted for weather changes on the entire Croatian TSO.
In the end we selected 33 weather forecast parameters as
predictors. Together with 5 predictors from losses history, we
thus used 38 predictors.

Duration of the training phase was roughly 20 minutes for
each model on an Intel dual-core i7 CPU. Since we trained one
model for each of 72 hours, total training time was roughly
24 hours. Testing phase is only a few seconds long in total.

D. Model evaluation

The model accuracy evaluation was performed to test the
validity of the model. Because the model is data-driven, care
has been taken to train the model on one set of data and then
to evaluate the model on a different set of data. The purpose
of this split of the data is to evaluate if the model has learned
the general patterns of relations between input predictors and
losses forecast. It is possible the model has learned only the
specific relations of the training dataset. If that were the case
the model would perform poorly on the different set of data.
We call this type of model over trained. On the other hand if
it performs well on a different set of data, we say the model
is general.

We used two different method test-train splits of the data.
The first split randomly selected 80 % of the data for training
and 20 % of the data for validation. Advantage of this test-
train split is that it encompasses all months from the available
dataset, and with it all available weather conditions. The
drawback is that the model is possibly over-trained and would
perform worse in system operation. This is because of high
correlation between neighboring hours. Thus, this data split
gives us an optimistic view of model performance.

The second data split is chronological. Everything before
a certain date is a training set of data and everything after
that date is the validation set of data. Since not all available
months are used, and thus, not all weather conditions are used,
the model will perform worse in validation than in system
operation. Thus, this data split gives us a pessimistic view of
model performance.

We expect the actual results in system operation to fall
somewhere between optimistic and pessimistic model evalua-
tion.

In choosing the accuracy metric the main purpose of the
forecast has to be taken into account. In our case, the purpose
is trading in the electrical energy markets. Therefore, a linear
difference between the true and the forecasted value is desired
in the metric of accuracy. Among those accuracy metrics, the
mean average percentage error (MAPE) was chosen because
this is a standard metric in HOPS, so the comparison of results
proved easier. MAPE is defined as

L rue*L orecaste
) £ fed  100%|
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where at each time point L7,y and Lporecasteq represent the
true observed/measured losses and forecasted losses respec-
tively. N is the number of data samples for the time scale.

III. RESULTS AND DISCUSSION

Comparison of the results between SVR model and current
system operation methodology are shown in Fig. 3. In plotting
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Fig. 3. Comparison between SVR model and current system operation

baseline results.

these results and all others, Python Matplotlib library [15]
was used. We see that both the pessimistic and optimistic
split of the data discussed in Section II-D show superior
results compared to current system operation methodology.
As explained, we expect the results in the testing phase to
fall somewhere between optimistic and pessimistic results.

Standard purchasing procedure, described in Section II-A,
is to bid for all 24 hours at the same time as is a standard
procedure for the day-ahead markets. MAPE shown in Fig. 3
was averaged for all 24 bids. However, electric energy to cover
losses need not be purchased in day-ahead markets, but can be
purchased earlier or later. To help facilitate that decision, we
analyzed the MAPE for different forecasting horizons. From
the Fig. 4 it can be seen that forecasting losses one hour in
advance, produces MAPE of approximately 6%. On the other
hand forecasting losses 36 hours in advance, produces MAPE
of approximately 11 %. Thus, using the proposed model, one
should consider covering the losses on some markets that are
closer to real time than day-ahead markets. This idea is not
further explored here, because it is not the central topic of the
paper. Additionally, magnitude of improvement from weather
forecast data can also be seen from the Fig. 4. Inclusion of
weather data reduces the error, but increases dispersion of
error, especially after the 60™ hour in the future. The reason for
this is reduced availability of weather forecasts for such a long
time horizons, and consequently less training data available.
Losses forecasts are mainly used up to 48 hours, so it is not
a large concern.
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Fig. 4. MAPE accuracy for each forecasted hour with and without weather
data.

A. Losses forecasting tool

The software tool for losses forecasting was created with the
described SRV model at the core. The purpose of the tool is to
facilitate the usage of the developed model for standard every
day operations at the TSO. The tool automatically generates
losses forecasts 4 times a day - every time after a new weather
forecast becomes available. Internal structure of the software
tool has several layers of back-end and a front-end. The
first layer of the back-end is hosted on a dedicated server,
implemented using Play framework and relies heavily on the
Akka framework. Internally, it uses Python script in which the
described SVR algorithm is implemented. Another back-end
layer serves front-end static resources and hosts application
programming interfaces for the front-end. This part is also
implemented in the Play framework. All forecasts and inte-
grated error evaluation can be accessed through custom made
front-end part that is implemented in React/Redux frameworks
and host of smaller libraries from React ecosystem. Example
of the front-end user interface is shown in Fig. 5.

B0 HOPS +0PS Gubic:

25.51%

Fig. 5. Appearance of software tool user interface used for viewing and
evaluating losses forecast.
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IV. CONCLUSIONS AND FUTURE WORK

Model for generation of losses forecasting was created using
SVR supervised machine learning algorithm. Input data used
are historical losses and weather forecasts. Validation of the
model on the data unseen by the model in the training phase
suggests that the model will perform significantly better than
the current method in operation. The described model was in-
tegrated into a software tool for automatic losses forecasting in
the entire Croatian transmission system. The tool is currently
being tested at the TSO in parallel with their conventional
method to see how it performs in operation on real-time data.
The testing is in the early phase, so it is too early to present
conclusions, but all the indications is that the developed model
and the developed tool improved the operations. Analysis of
the validation data demonstrate that the losses forecast is much
better for the first few hours, so the option of covering the
losses on some market closer to real time, rather than day-
ahead marked, should be considered. The main drawback of
the model presented in this paper is that it calculates losses
for the entire Croatian transmission system at once. Because
of this, a large number of predictors is used as inputs to the
model, which prevents the usage of more advanced machine
learning methods. This drawback is to be corrected with
additional data available in the future research as the focus is
shifted towards smaller geographical regions, even individual
lines or nodes of the transmission system. Fig. 6 shows the

10 4

Losses on transmission line Ernestinovo - Ugljevik [MW]

0 100 200 300 400 500 600
Power trough transmission line Ernestinove - Ugljevik [MW]

Fig. 6. Example of one power line in Croatian TS: non-linear dependence of
power line losses to load.

measured dependence of power line losses to load for one 400
kV power line in the Croatian transmission system. It can be
seen that the dependence is highly non-linear. Additionally,
the shape of the curve can be very different, even for adjacent
power lines. Moreover, the dependence showed in the Fig. 6
is only on one parameter: load. The losses, however, are
dependent on multiple parameters, especially on the weather
conditions. As in the presented SVR model, the future work
will focus on forecasting losses from multiple parameters,
including weather parameters. Since it will be geographically
limited it will have fewer parameters. Therefore, the usage of
some non-linear method will be easier.
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